A matching theorem for graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matching Integral Graphs of Small Order

In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...

متن کامل

The Two Ear Theorem on Matching-Covered Graphs

We give a simple and short proof for the two ear theorem on matchingcovered graphs which is a well-known result of Lovász and Plummer. The proof relies only on the classical results of Tutte and Hall on the existence of perfect matching in (bipartite) graphs.

متن کامل

A Turán Theorem for Random Graphs Dean of the Graduate School Date a Turán Theorem for Random Graphs a Turán Theorem for Random Graphs

of a thesis submitted to the Faculty of the Graduate School of Emory University in partial fulfillment of the requirements of the degree of Master of Science Department of Mathematics and Computer Science

متن کامل

A Bernstein Theorem for Special Lagrangian Graphs

We obtain a Bernstein theorem for special Lagrangian graphs in Cn = R for arbitrary n only assuming bounded slope but no quantitative restriction.

متن کامل

A Kruskal-Katona type theorem for graphs

A bound on consecutive clique numbers of graphs is established. This bound is evaluated and shown to often be much better than the bound of the Kruskal-Katona theorem. A bound on non-consecutive clique numbers is also proven.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory

سال: 1970

ISSN: 0021-9800

DOI: 10.1016/s0021-9800(70)80013-8